
Natural Language Semantics using Probabilistic Logic

Islam Beltagy
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

beltagy@cs.utexas.edu

Doctoral Dissertation Proposal

Supervising Professors: Raymond J. Mooney, Katrin Erk

Abstract
With better natural language semantic representations, computers can do more applications more ef-

ficiently as a result of better understanding of natural text. However, no single semantic representation
at this time fulfills all requirements needed for a satisfactory representation. Logic-based representations
like first-order logic capture many of the linguistic phenomena using logical constructs, and they come
with standardized inference mechanisms, but standard first-order logic fails to capture the “graded” as-
pect of meaning in languages. Distributional models use contextual similarity to predict the “graded”
semantic similarity of words and phrases but they do not adequately capture logical structure. In addi-
tion, there are a few recent attempts to combine both representations either on the logic side (still, not a
graded representation), or in the distribution side(not full logic).

We propose using probabilistic logic to represent natural language semantics combining the expres-
sivity and the automated inference of logic, and the gradedness of distributional representations. We
evaluate this semantic representation on two tasks, Recognizing Textual Entailment (RTE) and Semantic
Textual Similarity (STS). Doing RTE and STS better is an indication of a better semantic understanding.

Our system has three main components, 1. Parsing and Task Representation, 2. Knowledge Base
Construction, and 3. Inference. The input natural sentences of the RTE/STS task are mapped to logical
form using Boxer which is a rule based system built on top of a CCG parser, then they are used to for-
mulate the RTE/STS problem in probabilistic logic. Then, a knowledge base is represented as weighted
inference rules collected from different sources like WordNet and on-the-fly lexical rules from distribu-
tional semantics. An advantage of using probabilistic logic is that more rules can be added from more
resources easily by mapping them to logical rules and weighting them appropriately. The last component
is the inference, where we solve the probabilistic logic inference problem using an appropriate proba-
bilistic logic tool like Markov Logic Network (MLN), or Probabilistic Soft Logic (PSL). We show how
to solve the inference problems in MLNs efficiently for RTE using a modified closed-world assumption
and a new inference algorithm, and how to adapt MLNs and PSL for STS by relaxing conjunctions.
Experiments show that our semantic representation can handle RTE and STS reasonably well.

For the future work, our short-term goals are 1. better RTE task representation and finite domain han-
dling, 2. adding more inference rules, precompiled and on-the-fly, 3. generalizing the modified closed–
world assumption, 4. enhancing our inference algorithm for MLNs, and 5. adding a weight learning step
to better adapt the weights. On the longer-term, we would like to apply our semantic representation to the
question answering task, support generalized quantifiers, contextualize WordNet rules we use, apply our
semantic representation to languages other than English, and implement a probabilistic logic Inference
Inspector that can visualize the proof structure.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Natural Language Semantics using Probabilistic Logic

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Texas at Austin,Department of Computer
Sciences,Austin,TX,78712

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
With better natural language semantic representations, computers can do more applications more
efficiently as a result of better understanding of natural text. However, no single semantic representation at
this time fulfills all requirements needed for a satisfactory representation. Logic-based representations like
first-order logic capture many of the linguistic phenomena using logical constructs, and they come with
standardized inference mechanisms, but standard first-order logic fails to capture the ???graded??? aspect
of meaning in languages. Distributional models use contextual similarity to predict the ???graded???
semantic similarity of words and phrases but they do not adequately capture logical structure. In addition
there are a few recent attempts to combine both representations either on the logic side (still, not a graded
representation), or in the distribution side(not full logic). We propose using probabilistic logic to represent
natural language semantics combining the expressivity and the automated inference of logic, and the
gradedness of distributional representations. We evaluate this semantic representation on two tasks,
Recognizing Textual Entailment (RTE) and Semantic Textual Similarity (STS). Doing RTE and STS better
is an indication of a better semantic understanding. Our system has three main components, 1. Parsing and
Task Representation, 2. Knowledge Base Construction, and 3. Inference. The input natural sentences of the
RTE/STS task are mapped to logical form using Boxer which is a rule based system built on top of a CCG
parser, then they are used to formulate the RTE/STS problem in probabilistic logic. Then, a knowledge
base is represented as weighted inference rules collected from different sources like WordNet and
on-the-fly lexical rules from distributional semantics. An advantage of using probabilistic logic is that more
rules can be added from more resources easily by mapping them to logical rules and weighting them
appropriately. The last component is the inference, where we solve the probabilistic logic inference
problem using an appropriate probabilistic logic tool like Markov Logic Network (MLN), or Probabilistic
Soft Logic (PSL). We show how to solve the inference problems in MLNs efficiently for RTE using a
modified closed-world assumption and a new inference algorithm, and how to adapt MLNs and PSL for
STS by relaxing conjunctions. Experiments show that our semantic representation can handle RTE and
STS reasonably well. For the future work, our short-term goals are 1. better RTE task representation and
finite domain handling 2. adding more inference rules, precompiled and on-the-fly, 3. generalizing the
modified closed??? world assumption, 4. enhancing our inference algorithm for MLNs, and 5. adding a
weight learning step to better adapt the weights. On the longer-term, we would like to apply our semantic
representation to the

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

34

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contents

1 Introduction 3

2 Background and Related Work 6
2.1 Logical Semantics . 6
2.2 Distributional Semantics . 7
2.3 Probabilistic Logic . 7

2.3.1 Markov Logic Network . 7
2.3.2 Probabilistic Soft Logic . 8

2.4 Tasks . 9
2.4.1 Recognizing Textual Entailment . 9
2.4.2 Semantic Textual Similarity . 9

3 Completed Research 10
3.1 Parsing and Task Representation . 10

3.1.1 Tasks as Probabilistic Logic Inference . 10
3.1.2 Working with DCA . 11

3.2 Knowledge Base Construction . 12
3.2.1 WordNet . 13
3.2.2 Distributional Semantics . 13

3.3 Probabilistic Logical Inference . 13
3.3.1 RTE using MLNs . 14

3.3.1.1 Query Formula . 14
3.3.1.2 Modified Closed-World Assumption . 15

3.3.2 STS using MLNs . 16
3.3.3 STS using PSL . 18

3.4 Evaluation . 20
3.4.1 Datasets . 20
3.4.2 Knowledge Base Evaluation . 21
3.4.3 Inference Evaluation . 22

3.4.3.1 RTE Inference . 22
3.4.3.2 STS Inference . 23

4 Proposed Research 25
4.1 Parsing and Task Representation . 25
4.2 Knowledge Base Construction . 26
4.3 Inference . 27
4.4 Learning . 27
4.5 Long Term . 28

5 Conclusions 29

6 Acknowledgments 30

References 31

2

1 Introduction

Natural Language semantics is the study of representing the “meaning” of natural text in a machine friendly
representation that supports automated reasoning, and that can be acquired automatically from the natural
text. Efficient semantic representations (meaning representations) and reasoning tools give computers the
power to perform useful complex applications like Question Answering, Automatic Grading and Machine
Translation. However, applications and tasks in natural language semantics are very diverse and pose dif-
ferent requirements on the underlying formalism for representing meaning. Some tasks require a detailed
representation of the structure of complex sentences. Some tasks require the ability to recognize near-
paraphrases or degrees of similarity between sentences. Some tasks require logical inference, either exact
or approximate. Often it is necessary to handle ambiguity and vagueness in meaning. Finally, we frequently
want to be able to learn relevant knowledge automatically from corpus data.

There is no single representation for natural language meaning at this time that fulfills all requirements,
but there are representations that meet some of the criteria. Logic-based representations (Montague, 1970;
Kamp & Reyle, 1993) like first-order logic provide an expressive and flexible formalism to deeply express
semantics by representing many of the linguistic constructs like conjunctions, disjunctions, negations and
quantifiers, and in addition, they come with standardized inference mechanisms. On the other hand, first-
order logic fails to capture the “graded” aspect of meaning in languages because it is binary by nature.
Distributional models (Turney & Pantel, 2010) use contextual similarity to predict the “graded” semantic
similarity of words and phrases (Landauer & Dumais, 1997; Mitchell & Lapata, 2010), and to model pol-
ysemy (Schutze, 1998; Erk & Padó, 2008; Thater, Fürstenau, & Pinkal, 2010), but they do not adequately
capture logical structure (Grefenstette, 2013). This suggests that distributional models and logic-based rep-
resentations of natural language meaning are complementary in their strengths (Grefenstette & Sadrzadeh,
2011; Garrette, Erk, & Mooney, 2011), which encourages developing new techniques to combine them.
There are a few recent attempts to combine logical and distributional representations. Lewis and Steedman
(2013) use distributional information to determine word senses, but still produce a strictly logical semantic
representation that does not address the “graded” nature of linguistic meaning. Also Grefenstette (2013)
tries to represent all logical constructs using vectors and tensors, but concludes that they do not adequately
capture logical structure

We propose a semantic representation that relies on probabilistic logic to combine the advantages of
logical and distributional semantics, in which logical form is the primary meaning representation and dis-
tributional information is encoded in the form of “weighted” logical rules (Beltagy, Chau, Boleda, Garrette,
Erk, & Mooney, 2013). Probabilistic logic frameworks like Markov Logic Networks (MLN) (Richardson &
Domingos, 2006) and Probabilistic Soft Logic (PSL) (Kimmig, Bach, Broecheler, Huang, & Getoor, 2012)
are Statistical Relational Learning (SRL) techniques (Getoor & Taskar, 2007) that combine logical and sta-
tistical knowledge in one uniform framework, and provide a mechanism for coherent probabilistic inference.
Probabilistic logic frameworks represent the uncertainty in terms of weights on the logical rules as in the
example below.

∀x. Smoke(x)⇒ Cancer(x) | 1.5
∀x.y Friend(x, y)⇒ (Smoke(x)⇔ Smoke(y)) | 1.1 (1)

The example denotes that if someone smokes, there is a chance that he gets cancer, and the smoking be-
haviour of friends is usually similar. A probabilistic logic program defines a probability distribution over
possible worlds, represented as graphical model, which is then used to draw inferences. Inference in MLNs
is intractable and usually exact inference is replaced with sampling techniques. On the other hand, PSL uses
continuous truth values for the ground atoms and uses continuous relaxations of the logical operators, then

3

hamster(
gerbil(

sim(
»

hamster,
»

gerbil) = w

8x
�
hamster(x) ! gerbil(x)

�
| f(w)

Figure 1: Turning distributional similarity into a weighted inference rule

frames the inference problem as a simple linear program.
Before discussing the components of our semantic representation, we first discuss how to evaluate it.

For evaluation, we use two standard tasks, Recognizing Textual Entailment (RTE) (Dagan, Roth, Sammons,
& Zanzotto, 2013) and Semantic Textual Similarity (STS) (Agirre, Cer, Diab, & Gonzalez-Agirre, 2012).
Given two sentences, RTE is the task of finding out if the first entails, contradicts, or is not related to the
second, while STS is the task of finding how semantically similar they are on a scale from 1 to 5. Both tasks
require deep understanding to the semantics of the sentences to be able to draw correct conclusions, which
serves as a benchmark for the semantic representation. In addition, RTE and STS have many applications
like Question Answering, Information Retrieval, Automatic Grading and Machine Translation.

Our approach has three main components, 1. Parsing and Task Representation, where input natural
sentences are mapped to logic then used to represent the target task as a probabilistic inference problem,
2. Knowledge Base Construction, where the background knowledge is collected from different sources, en-
coded as first-order logic rules and weighted. 3. Inference, which solves the generated probabilistic logic
problem. Inference is usually the bottleneck in SRL frameworks, because inferences in SRL tend to be
intractable problems that do not scale for large problem size. One powerful advantage of relying on prob-
abilistic logic as a semantic representation is that the logic allows for a modular system. This means, the
most recent advancements in any of the system components, in parsing, in knowledge base resources, and
in inference algorithms, can be easily incorporated in the system.

In the Parsing and Task Representation step, we map input sentences to logic using Boxer (Bos, 2008), a
wide-coverage semantic analysis tool built on top of a CCG parser (Clark & Curran, 2004). We show how to
use the logical formulas to formulate the RTE and STS tasks as probabilistic logic inference problems. RTE
performs two inferences because it is a three-way classification task, and STS is treated as two entailments
tasks, from the first sentences to the second, and from the second to the first (Beltagy, Erk, & Mooney,
2014a). It is important to note that probabilistic logic frameworks make the Domain Closure Assumption
(DCA) which states that there are no objects in the universe other than the named constants (Richardson &
Domingos, 2006). This means, constants and entities need to be explicitly introduced in the domain in a
way that makes probabilistic logic produce the expected inferences. We introduce new constants and entities
in the domain through skolemization and pragmatic analysis of the sentences in order to avoid having an
empty domain and to have universal quantifiers behave as expected in standard first-order logic.

In the Knowledge Base Construction step, we collect “on-the-fly” rules generated from distributional
semantics, capturing semantic similarities between words (Beltagy et al., 2013), and that is how we encode
the distributional information in our semantic representation. Rules are weighted, and the weight is a func-
tion of the semantic similarity score between the words. Figure 1 shows an example of such rule. We also

4

add hard rules (infinite weight) from WordNet (Princeton University, 2010) for Synonyms, Hypernyms, and
Antonyms, which experiments showed to be a valuable resource.

In the Inference step, first, we show how to perform the RTE task using MLNs and adapt inference
to allow it to scale. We implement an MLN inference algorithm that supports querying complex logical
formula, which is not supported in the available MLN tools (Beltagy & Mooney, 2014). Then, we enforce
a modified closed-world assumption that helps reduce the size of the inference problem and make inference
tractable (Beltagy & Mooney, 2014).

Second, we show how to perform the STS task on MLNs. The deterministic conjunction in logic is
more restrictive than what the STS task needs. Therefore, we replace the deterministic conjunction with an
average combiner (Natarajan, Khot, Lowd, Tadepalli, Kersting, & Shavlik, 2010) that is less strict than the
conjunction, and more suitable for the STS task (Beltagy et al., 2013). Third, we show how to perform the
STS task using PSL which is shown to be faster than MLNs and more suitable for the STS task. We show
how to adapt PSL for the STS task by replacing the conjunction with an averaging function, and a heuristic
grounding algorithm (Beltagy et al., 2014a). Finally, we present the evaluation of our system for the RTE
and STS tasks (Beltagy, Erk, & Mooney, 2014b), which shows that our semantic representation is able to
handle both tasks reasonably well.

In the short-term, we propose to extend our work in the following directions:

• Better RTE task formulation: We detect contradictions with the help of an additional inference, how-
ever, this inference misses some contradictions. We need a different inference that can capture con-
tradictions more accurately. Also we propose that we replace each inference P (Q|E) with the ratio
P (Q|E)
P (Q)

which indicates to what extent adding E changes probability of Q, which is more informa-

tive than P (Q|E) alone.

• DCA and Negated Existential: Our handling of quantifiers with the DCA is missing handling of
negated existential queries. We need to add support for this form of universal quantifiers to get correct
inferences.

• Paraphrase Rules: Large collections of paraphrases like PPDB (Ganitkevitch, Van Durme, & Callison-
Burch, 2013) are available. We will translate these rules to logic and add them to our knowledge base.

• Distributional phrasal rules: In addition to the lexical distributional rules we have, we will add rules
between short phrases. Phrases are defined using a set of predefined templates.

• More efficient MLN inference for complex queries: Currently, our inference algorithm performs in-
ference by estimating the partition function of two different graphical models. It would be more
efficient to perform both estimates in one inference step exploiting the similarities between the two
graphical models, and that we are only interested in the ratio between the two partition function not
their absolute values.

• Generalize the modified closed-world assumption: The one we use in our system so far assumes a
predefined form of inference rules. We want to generalize the definition of the modified closed-world
to arbitrary forms of rules.

• Weight Learning: Weight learning can be useful in many ways in our system. For example, it can be
used to learn better weights on inference rules, and to assign different weights to different parts of the
sentence in the STS task. We would like to apply weight learning to at least one of these problems.

5

In the long-term, we propose to extend our work in the following directions:

• Question Answering: we would like to apply our semantic representation to the question answering
task. In question answering, we search for the answer of a WH question in a large corpus of unstruc-
tured text. It is an interesting challenge to scale probabilistic logic inference to such large problems.

• Generalized Quantifiers: Generalized quantifiers like Few, Most, Many .. etc (Barwise & Cooper,
1981), are not natively supported in first-order logic, so we would like to add support for them in our
system by reasoning about the direction of entailment between parts of the pair of RTE sentences.
Few and Most can also be represented by replacing then with Every, and set a non-infinite weight for
the rule indicating that some worlds violate it.

• Contextualized WordNet rules: We would like to replace WordNet’s hard rules with a weighted rules
for different senses of the words, where rule’s weight comes from Word Sense Disambiguation (WSD)
step. This way, we take the context and the ambiguity of the words into account.

• Other Languages: we would like to see how our semantic representation be applied for languages
other than English. Theoretically, the proposed semantic representation is language independent, but
practically, not all the resources and tools are available, especially CCG parser and Boxer.

• Inference Inspector: this is an additional tool added to the Probabilistic logic inference process. It
gives insights on how the inference process goes, and outputs the rules with the biggest impact on the
inference’s result. In MLNs, all rules have some impact on the result, so finding the most impactful
ones is not straight forward. In the RTE task, this inspector can help finding what parts of T entail
what parts of H , and what rules are used. This way we can analyse RTE pairs easily to find the
missing rules.

2 Background and Related Work

2.1 Logical Semantics

Logic-based representations of meaning have a long tradition in natural language (Montague, 1970; Kamp
& Reyle, 1993). They handle many complex semantic phenomena such as relational propositions, logical
operators, and quantifiers; however, standard first-order logic and theorem provers are binary in nature
which prevents them from capturing the “graded” aspects of meaning in language. Also, it is difficult to
construct formal ontologies of properties and relations that have broad coverage, and mapping sentences
into logical expressions utilizing such an ontology is very difficult (Bos, 2013). Consequently, current
logical semantic analysis systems are mostly restricted to quite limited domains, such as querying a specific
database (Kwiatkowski, Choi, Artzi, & Zettlemoyer, 2013; Berant, Chou, Frostig, & Liang, 2013). In
contrast, our system is not limited to any formal ontology as we use a wide-coverage tool for semantic
analysis.

Boxer (Bos, 2008) is a software package for wide-coverage semantic analysis that produces logical forms
using Discourse Representation Structures (Kamp & Reyle, 1993). It builds on the C&C CCG parser (Clark
& Curran, 2004). which maps the input sentences into a lexically-based logical form, in which the predicates
are words in the sentence. For example, the sentence “A man is driving a car” in logical form is:

∃x, y, z. man(x) ∧ agent(y, x) ∧ drive(y) ∧ patient(y, z) ∧ car(z) (2)

6

2.2 Distributional Semantics

Distributional models (Turney & Pantel, 2010), on the other hand, use statistics on contextual data from
large corpora to predict semantic similarity of words and phrases (Landauer & Dumais, 1997; Mitchell
& Lapata, 2010). They are motivated by the observation that semantically similar words occur in similar
contexts, so words can be represented as vectors in high dimensional spaces generated from the contexts
in which they occur (Landauer & Dumais, 1997; Lund & Burgess, 1996). Such models have also been
extended to compute vector representations for larger phrases, e.g. by adding the vectors for the individual
words (Landauer & Dumais, 1997) or by a component-wise product of word vectors (Mitchell & Lapata,
2008, 2010), or more complex methods that compute phrase vectors from word vectors and tensors (Baroni
& Zamparelli, 2010; Grefenstette & Sadrzadeh, 2011). Therefore, distributional models are relatively easier
to build than logical representations, automatically acquire knowledge from “big data”, and capture the
“graded” nature of linguistic meaning, but they do not adequately capture logical structure (Grefenstette,
2013).

2.3 Probabilistic Logic

Probabilistic logic frameworks are Statistical Relational Learning (SRL) techniques (Getoor & Taskar, 2007)
that combine logical and statistical knowledge in one uniform framework, and provide a mechanism for
coherent probabilistic inference. Probabilistic logic frameworks typically employ weighted formulas in
first-order logic to compactly encode complex probabilistic graphical models. Weighting the rules is a way
of softening them compared to hard logical constraints and thereby allowing situations in which not all
clauses are satisfied. Equation 1 is an example of the weighted logical rules. With the weighted rules, a set
of constants need to be specified. For the rules in equation 1, we can add constants representing two persons,
Anna (A) and Bob (B). Probabilistic logic uses the constants to “ground” atoms with variables, so we get
“ground atoms” like Smoke(A), Smoke(B), Cancer(A), Cancer(B), Friend(A,A), Friend(A,B),
Friend(B,A), Friend(B,B). Rules are also grounded by replacing each atom with variables with all its
possible ground atoms. A probabilistic logic program defines a probability distribution over the possible
values of the ground atoms where they are treated as random variables. In addition to the set of rules R, a
probabilistic logic program takes an evidence set E asserting some truth values about some of the random
variables, e.g. Cancer(A) means that Anna has cancer. Then, given a query formula Q, probabilistic logic
inference calculates the probability P (Q|R,E) which is the answer to the query.

2.3.1 Markov Logic Network

Markov Logic Networks (MLN) (Richardson & Domingos, 2006) are one of the probabilistic logic frame-
works. MLNs define a probability distribution over possible worlds, where a world’s probability increases
exponentially with the total weight of the logical clauses that it satisfies. Probability of a given world x is
denoted by:

P (X = x) =
1
Z

exp

(∑

i

wini (x)

)
(3)

where Z is the partition function, i ranges over all formulas Fi is the MLN, wi is the weight of Fi and ni(x)
is the number of true groundings of Fi in the world x. MLN’s marginal inference calculates the probability
P (Q|E,R), where Q is a query, E is the evidence set, and R is the set of weighted formulas.

Alchemy (Kok, Singla, Richardson, & Domingos, 2005) is the most widely used MLN implementation.
It is a software package that contains implementations of a variety of MLN inference and learning algo-

7

rithms. However, developing a scalable, general-purpose, accurate inference method for complex MLNs is
an open problem.

2.3.2 Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is a recently proposed alternative framework for probabilistic logic (Kimmig
et al., 2012; Bach, Huang, London, & Getoor, 2013). It uses logical representations to compactly define large
graphical models with “continuous” variables, and includes methods for performing efficient probabilistic
inference for the resulting models. A key distinguishing feature of PSL is that ground atoms have soft,
continuous truth values in the interval [0, 1] rather than binary truth values as used in MLNs and most other
probabilistic logics. Given a set of weighted logical formulas, PSL builds a graphical model defining a
probability distribution over the continuous space of values of the random variables in the model. A PSL
model is defined using a set of weighted if-then rules in first-order logic, as in the following example:

∀x, y, z. friend(x, y) ∧ votesFor(y, z)⇒ votesFor(x, z) | 0.3
∀x, y, z. spouse(x, y) ∧ votesFor(y, z)⇒ votesFor(x, z) | 0.8 (4)

The first rule states that a person is likely to vote for the same person as his/her friend. The second rule
encodes the same regularity for a person’s spouse. The weights encode the knowledge that a spouse’s
influence is greater than a friend’s in this regard.

In addition, PSL includes similarity functions. Similarity functions take two strings or two sets as input
and return a truth value in the interval [0, 1] denoting the similarity of the inputs. For example, this is a rule
that incorporate the similarity of two predicates:

∀x. similarity(“predicate1”, “predicate2”) ∧ predicate1(x)⇒ predicate2(x) (5)

As mentioned above, each ground atom, a, has a soft truth value in the interval [0, 1], which is denoted
by I(a). To compute soft truth values for logical formulas, Lukasiewicz’s relaxation of conjunctions(∧),
disjunctions(∨) and negations(¬) are used:

I(l1 ∧ l1) = max{0, I(l1) + I(l2)− 1}
I(l1 ∨ l1) = min{I(l1) + I(l2), 1}
I(¬l1) = 1− I(l1)

(6)

Then, a given rule r ≡ rbody ⇒ rhead, is said to be satisfied (i.e. I(r) = 1) iff I(rbody) ≤ I(rhead).
Otherwise, PSL defines a distance to satisfaction d(r) which captures how far a rule r is from being satisfied:
d(r) = max{0, I(rbody)− I(rhead)}. For example, assume we have the set of evidence:
I(spouse(B,A)) = 1, I(votesFor(A,P)) = 0.9, I(votesFor(B,P)) = 0.3, and that r is the resulting
ground instance of rule (4). Then I(spouse(B,A) ∧ votesFor(A,P)) = max{0, 1 + 0.9− 1} = 0.9, and
d(r) = max{0, 0.9− 0.3} = 0.6.

Using distance to satisfaction, PSL defines a probability distribution over all possible interpretations I
of all ground atoms. The pdf is defined as follows:

p(I) =
1
Z

exp [−
∑

r∈R
λr(d(r))p];

Z =
∫

I
exp [−

∑

r∈R
λr(d(r))p]

(7)

8

where Z is the normalization constant, λr is the weight of rule r, R is the set of all rules, and p ∈ {1, 2}
provides two different loss functions. For our application, we always use p = 1

PSL is primarily designed to support MPE inference (Most Probable Explanation). MPE inference is the
task of finding the overall interpretation with the maximum probability given a set of evidence. Intuitively,
the interpretation with the highest probability is the interpretation with the lowest distance to satisfaction.
In other words, it is the interpretation that tries to satisfy all rules as much as possible. Formally, from
equation 7, the most probable interpretation, is the one that minimizes

∑
r∈R λr(d(r))

p. In case of p = 1,
and given that all d(r) are linear equations, then minimizing the sum requires solving a linear program,
which, compared to inference in other probabilistic logics such as MLNs, can be done relatively efficiently
using well-established techniques. In case p = 2, MPE inference can be shown to be a second-order cone
program (SOCP) (Kimmig et al., 2012).

2.4 Tasks

We evaluate our semantic representation using the RTE and STS tasks.

2.4.1 Recognizing Textual Entailment

Recognizing Textual Entailment (RTE) (Dagan et al., 2013) is the task of determining whether one natural
language text, the premise T , Entails, Contradicts, or not related (Neutral) to another, the hypothesis H .
Here are examples from the SICK dataset (Marelli, Menini, Baroni, Bentivogli, Bernardi, & Zamparelli,
2014):

• Entailment
T: A man and a woman are walking together through the woods.
H: A man and a woman are walking through a wooded area.

• Contradiction
T: A man is jumping into an empty pool
H: A man is jumping into a full pool

• Neutral
T: A young girl is dancing
H: A young girl is standing on one leg

2.4.2 Semantic Textual Similarity

Semantic Textual Similarity (STS) is the task of judging the similarity of a pair of sentences on a scale
from 0 to 5, and was recently introduced as a SemEval task (Agirre et al., 2012). Gold standard scores are
averaged over multiple human annotations and systems are evaluated using the Pearson correlation between
a system’s output and gold standard scores. Here are some examples:

• “A man is playing a guitar.” “A woman is playing the guitar.”, score: 2.75
• “A woman is cutting broccoli.” “A woman is slicing broccoli.”, score: 5.00
• “A car is parking.” “A cat is playing.”, score: 0.00

9

Sent1
Parsing
(Boxer)

KB result

Sent2

LF1

LF2

Knowledge
Base

Construction

Vector
Space

Inference

Figure 2: System Architecture

3 Completed Research

This section describes the details of our semantic representation, and how it is used to do the RTE and STS
tasks. Figure 2 shows the high level system architecture. Input sentences are mapped to logic using Boxer,
the knowledge base KB is collected, then KB and the sentences are passed to the inference engine to solve
the inference problem according to the target task.

3.1 Parsing and Task Representation

This is where our system maps natural sentences into logical formulas, then use them to formulate the RTE
and STS tasks as probabilistic logic inference problems.

3.1.1 Tasks as Probabilistic Logic Inference

Boxer Natural sentences are mapped to logical form using Boxer (Bos, 2008) as in equation 2. We call
Boxer’s output alone an uninterpreted logical form because predicates do not have meaning by themselves.
They get the meaning from the knowledge base KB we build in section 3.2.

RTE Task We are given two sentences T andH , and we want to find if T entails, contradicts or neutral to
H . Checking for entailment in the standard logic is checking if T ∧KB ⇒ H , where KB is the knowledge
base we build in section 3.2. Its probabilistic version is calculating the probability P (H|T,KB), where H
is the probabilistic logic query.

Differentiating between Contradiction and Neutral requires one more inference. It is to calculate the
probability P (H|¬T,KB). In case Pr(H|T,KB) is high, while Pr(H|¬T,KB) is low, this indicates
Entails. In case it is the other way around, this indicates Contradicts. If both values are close, this means T
does not affect the probability of H and indicative of Neutral. Practically, we train an SVM classifier with
LibSVM’s default parameters (Chang & Lin, 2001) to map the two probabilities to the final decision.

STS Task We are given two sentences S1, S2 and we want to find how semantically similar they are.
We realize the STS task as the two probabilistic entailments P (S1|S2,KB) and P (S2|S1,KB). The final
similarity score is produced from an Additive Regression (Friedman, 1999) model with WEKA’s default
parameters (Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 2009) trained to map the two degree of
entailments to a similarity score.

10

3.1.2 Working with DCA

A significant difference between standard logic and probabilistic logic comes from the fact that probabilistic
logic frameworks usually make the Domain Closure Assumption (DCA) (Richardson & Domingos, 2006)
which MLNs and PSL make. DCA states that, there are no objects in the universe other than the named con-
stants. This means, constants need to be explicitly introduced in the probabilistic logic program. Constants
are used to ground the predicates, and build the graphical model. For different set of constants, a different
graphical model is built. For example, constants like Anna A and Bob B need to be explicitly stated along
with the rules in equation 1. Without them, the graphical model will be empty (no random variables). An-
other problem is that DCA changes the semantics of universal quantifiers to operate only on the finite set
of constants in the domain. This means that even more constants need to be added to the domain for the
universal quantifier to work as expected. This section discusses how we generate constants and entities in
the domain for the inference problem to work properly.

Skolemization The first set of constants are introduced through “Skolemization” of T . Skolemizing T
replaces non-embedded existentially quantified variables with skolem constants. For example, skolemizing
the logical expression in equation 2 is:

man(M) ∧ agent(D,M) ∧ drive(D) ∧ patient(D,C) ∧ car(C) (8)

where M,D,C are constants introduced into the domain. In case of embedded existentially quantified
variables, they are replaced with skolem functions, where function parameters are the outer universally
quantifier variables. For example, here is how the logical form of “All birds fly” is skolemized:

T : ∀x. bird(x)⇒∃y. agent(y, x) ∧ fly(y)
skolemized : ∀x. bird(x)⇒agent(f(x), x) ∧ fly(f(x))

(9)

The skolem functions should map its arguments to new constants. For the example above, the skolem
function should introduce a new “flying event” for each “bird” in the domain. We simulate this behaviour by
replacing the skolem function with a new predicate and universally quantified variables, then add the extra
constants as evidence. The example above would look like:

∀x. bird(x)⇒∀y. skolem(x, y)⇒ agent(y, x) ∧ fly(y) (10)

For now, let’s say we have evidence of a “bird” B1 (we explain how this entity gets introduced later this
section). For all possible values of the universally quantified variables (in this example, the variable x, and its
possible values are only the constantB1), we generate evidence for the skolem predicate with new constants
in place of skolemized existentially quantified variable (in this case, the variable y). For the example, we
generate one atom skolem(B1, C1) where C1 is the newly introduced constant and the atom is simulating
that the function f(x) maps constant B1 to the constant C1.

Existence Constants introduced through skolemization are not enough to represent T in a way that sup-
ports the desired inferences. We need to introduce additional constants and entities for universally quantified
variables in T in order for the domain to be non-empty. Linguistically, this can be justified by pragmatics:
When we hear “All birds with wings fly” we assume that the hearer thinks that there are birds with wings.

In Boxer’s output, two linguistic constructs result into sentences with universally quantified variables.
The first is sentences with implications (in case the implication is not negated). The implication has a

11

universally quantified restrictor (left-hand side), and existentially quantified body (right-hand side), e.g.
“All birds with wings fly” in logic is:

T : ∀x, y. bird(x) ∧ with(x, y) ∧ wing(y)⇒ ∃z. agent(z, x) ∧ fly(z) (11)

Pragmatically, this sentence implies that there exist birds with wings. In general, we can infer the existence
of the entities on the universally quantified left-hand side of the implication, and thereby generate the extra
entities needed. For each non-negated implication that Boxer generates, we add to the evidence atoms
representing the left-hand side of the implication which is always universally quantified. For the example,
we generate evidence of a “bird with wings”: bird(B) ∧ with(B,W) ∧ wing(W).

The second linguistic construct that results into sentences with universally quantified variables is sen-
tences with negated existence, like “No bird flies” which in logic is:

¬∃x, y. bird(x) ∧ agent(y, x) ∧ fly(y) (12)

We do not need to generate any additional entities for the universally quantified variables in this sentence,
because the sentence is negating the existence of the entities.

Universal Quantifier DCA changes the semantics of universal quantifiers to operate only on the constants
in the domain. This makes universal quantifiers inH sometimes behave in an undesirable way. For example,
consider the RTE problems: “T1: There is a black bird”, “T2: All birds are black” and “H: All birds are
black”, which in logic are

T1 : ∃x. bird(x) ∧ black(x)
skolemized T1 : bird(B) ∧ black(B)

T2 : ∀x. bird(x)⇒ black(x)
skolemized T2 : ∀x. bird(x)⇒ black(x)

H : ∀x. bird(x)⇒ black(x)

(13)

Because of DCA, probabilistic logic concludes that T1 entails H because H is true for all constants in the
domain (in this example, the single constant B). While we used Skolemization and Existence to handle the
issues in the representation of T , this problem affects H . As we do with the universal quantifiers in T , we
also introduce entities for the universally quantified left-hand side of implication in H , but for a different
rationale. In the example shown, we introduce evidence of a new bird bird(D). The rational here is that the
introduction of a new evidence bird(D) prevents the hypothesis from being judged true for the RTE pair
T1, H . However, for T2, H the new bird bird(D) will be inferred to be black, in which case we can take the
hypothesis to be true.

In case of H with universal quantifiers from negated existentially quantified sentences as in equation 12,
they can not be ignored as we do in case of Existence with T . H should be encoded in a way that it can not
be entailed unless T explicitly entails it, not because of the assumption that things are false by default. We
keep this case for future work as explained in section 4.1.

3.2 Knowledge Base Construction

This section discusses how we collect the rules of the knowledge base KB

12

3.2.1 WordNet

WordNet (Princeton University, 2010) is a lexical database of words grouped into sets of synonyms. In
addition to grouping synonyms, it lists semantic relations connecting groups. We represent the information
on WordNet as “hard” logical rules and add them to the system’s KB. The semantic relations we use are:

• Synonyms: ∀x. man(x)⇔ guy(x)

• Hyponym: ∀x. car(x)⇒ vehicle(x)

• Antonyms: ∀x. tall(x)⇔ ¬short(x)

One advantage of using logic for semantic representation is that it is a powerful representation that can
represent different semantic relations accurately.

3.2.2 Distributional Semantics

As depicted in figure 1, distributional information can be encoded as weighted inference rules. This is how
we bring logical and distributional semantics together. We treat distributional similarity between words as
degree of entailment, a move that has a long tradition (e.g., (Lin & Pantel, 2001; Raina, Ng, & Manning,
2005; Szpektor & Dagan, 2008)).

As we present in (Beltagy et al., 2013), for all pairs of words(a, b) where a ∈ T and b ∈ H , generate the
weighted inference rule

∀x. a(x)⇒ b(x) | f(sim)

sim = cos(#»a ,
#»

b)
(14)

sim is the similarity measure between the vector of the word a and the vector of the word b. We use cosine
similarity, but more advanced measures can also be used. f is a mapping function that maps the similarity
measure to a weight that fits the probabilistic logic used. Each rule is assigned a weight w = f(sim)
that approximates the likelihood of the rule holding. For MLNs, because weights are in the exponent, f is
denoted by:

w = f(sim) = log(
sim

1− sim) (15)

For PSL, f(sim) = sim because PSL has a special construct to represent similarities.
Distributional representations for words are derived by counting co-occurrences in the ukWaC, WaCk-

ypedia, BNC and Gigaword corpora (Beltagy, Roller, Boleda, Erk, & Mooney, 2014). We use the 2000 most
frequent content words as basis dimensions, and count co-occurrences within a two word context window.
The vector space is weighted using Positive Pointwise Mutual Information (Roller, Erk, & Boleda, 2014).

3.3 Probabilistic Logical Inference

The last component is probabilistic logical inference. We showed in section 3.1 how to represent the tasks as
probabilistic inference problems on the form P (Q|E,R), where Q is the query formula, E is the evidence
set, and R is a set of rules. This section shows how to solve this inference problem for different tasks using
different probabilistic logic frameworks.

13

3.3.1 RTE using MLNs

MLN’s inference is usually intractable, and using MLN’s implementations “out of the box” do not work for
our application. This section discusses an MLN implementation that supports complex queries Q. It also
suggests a form of closed-world assumption that has the effect of dramatically decreasing the problem size,
hence making inference fast.

3.3.1.1 Query Formula Current implementations of MLNs like Alchemy (Kok et al., 2005) do not
allow queries to be complex formulas, they can only calculate probabilities of ground atoms. This section
discusses an inference algorithm for arbitrary query formulas (Beltagy & Mooney, 2014).

Standard Work-Around Although current MLN implementations can only calculate probabilities of
ground atoms, they can be used to calculate the probability of a complex formula through a simple work-
around. The complex query formula Q is added to the MLN using the hard formula:

Q⇔ result(D) | ∞ (16)

where result(D) is a new ground atom that is not used anywhere else in the MLN. Then, inference is run
to calculate the probability of result(D), which is equal to the probability of the formula Q. However, this
approach can be very inefficient for some queries. For example, consider the query Q,

Q : ∃x, y, z. man(x) ∧ agent(y, x) ∧ drive(y) ∧ patient(y, z) ∧ car(z) (17)

This form of existentially quantified formulas with a list of conjunctively joined atoms, is very common
in the inference problems we are addressing, so it is important to have efficient inference for such queries.
However, using this Q in equation 16 results in a very inefficient MLN. The direction Q ⇐ result(D)
of the double-implication in equation 16 is very inefficient because the existentially quantified formula is
replaced with a large disjunction over all possible combinations of constants for variables x, y and z (Gogate
& Domingos, 2011). Generating this disjunction, converting it to clausal form, and running inference on the
resulting ground network becomes increasingly intractable as the number of variables and constants grow.

New Inference Method Instead, we propose an inference algorithm to directly calculate the probability of
complex query formulas. The probability of a formula is the sum of the probabilities of the possible worlds
that satisfy it. Gogate and Domingos (2011) show that to calculate the probability of a formula Q given a
probabilistic knowledge base K, it is enough to compute the partition function Z of K with and without Q
added as a hard formula:

P (Q | K) =
Z(K ∪ {(Q,∞)})

Z(K)
(18)

Therefore, all we need is an appropriate algorithm to estimate the partition function Z of a Markov network.
Then, we construct two ground networks, one with the query and one without, and estimate their Zs using
that estimator. The ratio between the two Zs is the probability of Q.

We tried to estimate Z using a harmonic-mean estimator on the samples generated by MC-SAT (Poon
& Domingos, 2006), a popular and generally effective MLN inference algorithm, but we found that the
estimates are highly inaccurate as shown in (Venugopal & Gogate, 2013). So, the partition function estimator
we use is SampleSearch (Gogate & Dechter, 2011). SampleSearch is an importance sampling algorithm that
has been shown to be an effective sampling algorithm when there is a mix of probabilistic and deterministic

14

(hard) constraints, a fundamental property of the inference problems we address. Importance sampling in
general is problematic in the presence of determinism, because many of the generated samples violate the
deterministic constraints, and they get rejected. Instead, SampleSearch uses a base sampler to generate
samples then uses backtracking search with a SAT solver to modify the generated sample if it violates
the deterministic constraints. We use an implementation of SampleSearch that uses a generalized belief
propagation algorithm called Iterative Join-Graph Propagation (IJGP) (Dechter, Kask, & Mateescu, 2002)
as a base sampler. This version is available online (Gogate, 2014).

For the example Q in equation 17, in order to avoid generating a large disjunction because of the exis-
tentially quantified variables, we replace Q with its negation ¬Q, so the existential quantifiers are replaced
with universals, which are easier to ground and perform inference upon. Finally, we compute the probability
of the query P (Q) = 1−P (¬Q). Note that replacing Q with ¬Q cannot make inference with the standard
work-around faster, because with ¬Q, the direction ¬Q ⇒ result(D) suffers from the same problem of
the existential quantifiers instead of the other direction ¬Q⇐ result(D).

3.3.1.2 Modified Closed-World Assumption This section explains why our inference problems are dif-
ficult for MLN, and why standard lifting techniques are not enough to solve it. Next it discusses the rela-
tionship between the traditional low prior on predicates, and our modified closed-world assumption. Finally,
it defines our modified closed-world assumption and describes how it is implemented (Beltagy & Mooney,
2014).

Problem Description In the inference problems we address, typically formulas are long, especially the
query formula. First-order formulas result in an exponential number of ground clauses, where the number
of ground clauses of a formula is O(cv), where c is number of constants in the domain, and v is number
of variables in the formula. For any moderately long formula, the number of resulting ground clauses
is infeasible to process in any reasonable time using available inference algorithms. Even recent lifting
techniques (Singla & Domingos, 2008; Gogate & Domingos, 2011) that try to group similar ground clauses
to reduce the total number of nodes in the ground network, are not applicable here. Lifting techniques
implicitly assume that c is large compared to v, and the number of ground clauses is large because c is large.
In our case, c and v are typically in the same range, and v is large, and this makes lifting algorithms fail to
find similarities to lift.

Low prior In the inference problems we address, as in most MLN applications, all atoms are initialized
with a low prior. This low prior means that, by default, all groundings of an atom have very low probability,
unless they can be inferred from the evidence and knowledge base. However, we found that a large fraction
of the ground atoms cannot be inferred, and their probabilities remain very low. This suggests that these
ground atoms can be identified and removed in advance with very little impact on the approximate nature of
the inference. As the number of such ground atoms is large, this has the potential to dramatically decrease
the size of the ground network. Our modified closed-world assumption was created to address this issue.

Definition Closed-world, open-world and our modified closed-world assumptions are different ways of
specifying what ground atoms are initialized to True, False or Unknown. True and False ground atoms
are used to construct the appropriate network but are not part of the final ground Markov network. Only
Unknown ground atoms participate in probabilistic inference. All ground atoms specified as evidence are
known (True or False). The difference between the three assumptions is in the non-evidence ground atoms.

15

With a closed-world assumption, non-evidence ground atoms are all False. In case of the open-world as-
sumption, non-evidence ground atoms are all Unknown and they are all part of the inference task. In case
of our modified closed-world assumption, non-evidence ground atoms are False by default, unless they are
reachable from any of the evidence, or from a ground atom in an input formula.

Reachability A ground atom is said to be reachable from the evidence if there is a way to propagate the
evidence through the formulas and reach this ground atom. The same applies for ground atoms specified in
an input formula. For example, consider the evidence set E, and clauses r1, r2:

E : { g(C1), h(C2) }
r1 : ∀x, y. g(x) ∨ h(y) ∨ i(x, y)
r2 : ∀x, y. j(x) ∨ k(y) ∨ i(x, y)

From r1, variables x, y can be assigned the constants C1, C2 respectively because of the evidence g(C1),
h(C2). Then, this evidence gets propagated to i(C1, C2), so the ground atom i(C1, C2) is Unknown. From
r2, the variables x, y can be assigned the constants C1, C2 respectively because of the Unknown ground
atom i(C1, C2), and this gets propagated to j(C1), k(C2), so ground atoms j(C1), k(C2) are also Unknown.
All other ground atoms, except the evidence g(C1) and h(C2), are False because they are not reachable from
any evidence.

Note that the definition of reachability here (mcw-reachable) is different from the definition of reach-
ability in graph theory (graph-reachable). Nodes can be graph-reachable but not mcw-reachable. For the
example above, consider the full ground network of E and r1, which contains 8 nodes, and 4 cliques. It is a
connected graph, and all nodes are graph-reachable from each others. However, as explained in the example,
i(C1, C2) is the only mcw-reachable node.

Algorithm and Implementation Algorithm 1 describes the details of the grounding process with the
modified closed-world assumption applied. Lines 1 and 2 initialize the reachable set with the evidence and
any ground atom in R. Lines 3-11 repeatedly propagate evidence until there is no change in the reachable
set. Line 12 generates False evidence for all unreachable ground atoms. Line 13 generates all ground
clauses, then lines from 14-31 substitute values of the known ground atoms in the ground clauses. Alchemy
drops all True and False ground clauses, but this does not work when the goal of the inference algorithm
is to calculate Z. Lines from 16-30 describe the change. True ground clauses are dropped, but not False
ground clauses. If a False ground clause is a grounding of one of Q’s clauses, then Z = 0 and there is no
need to perform inference since there is no way to satisfy Q given E and R. If there is False hard clause,
then this MLN is inconsistent. Otherwise, the False ground clause can be dropped. The resulting list of
ground clauses GC are then passed to the inference algorithm to estimate Z.

3.3.2 STS using MLNs

We showed in section 3.1 how to represent STS as an inference problem in the form P (Q|E,R). However,
inference in STS is different from that in RTE (Beltagy et al., 2013). Here is an example why they are
different:

S1: ∃x0, e1. man(x0) ∧ agent(e1, x0) ∧ drive(e1)

S2: ∃x0, e1, x2. man(x0) ∧ agent(e1, x0) ∧ drive(e1) ∧ patient(e1, x2) ∧ car(x2)

16

Algorithm 1 Grounding with modified closed-world assumption
Input R: {K ∪ Q} set of first-order clauses, where K is the set of clauses from the input MLN, and Q is

the set of clauses from the query.
Input E: set of evidence (list of ground atoms)
Output : a set of ground clauses with the modified closed-world assumption applied

1: Add all E to the reachable ground atoms
2: Add all ground atoms in R to reachable
3: repeat
4: for all r ∈ R do
5: p = propagate reachable ground atoms between predicates sharing the same variable
6: add propagated ground atoms (p) to reachable
7: if p not empty then
8: changed = true
9: end if

10: end for
11: until not changed
12: Generate False evidence for ground atoms 6∈ reachable and add them to E
13: GC = Use MLN’s grounding process to ground clauses R
14: for all gc ∈ GC do
15: gc = gc after substituting values of known ground atoms in E
16: if gc = True then
17: drop gc
18: else if gc = False then
19: if gc is a grounding of one of Q’s clauses then
20: Terminate inference with Z = 0
21: else
22: if gc is hard clause then
23: Error inconsistent MLN
24: else
25: drop gc
26: end if
27: end if
28: else
29: keep gc in GC
30: end if
31: end for
32: return GC

Calculating P (S2|S1) in an RTE manner gives the probability of zero, because there is no evidence for a
car, and the hypothesis predicates are conjoined using a deterministic AND. For RTE, this makes sense: If
one of the hypothesis predicates is False, the probability of entailment should be zero. For the STS task,
this should in principle be the same, at least if the omitted facts are vital, but it seems that annotators rated
the data points in this task more for overall similarity than for degrees of entailment. So in STS, we want
the similarity to be a function of the number of elements in the hypothesis that are inferable. Therefore, we
need to replace the deterministic AND with a different way of combining evidence. We chose to use the

17

average evidence combiner for MLNs introduced by (Natarajan et al., 2010). To use the average combiner,
the full logical form is divided into smaller clauses (which we call mini-clauses), then the combiner averages
their probabilities. In case the formula is a list of conjuncted predicates, a mini-clause is a conjunction of
a single-variable predicate with a relation predicate (as in the example below). In case the logical form
contains a negated sub-formula, the negated sub-formula is also a mini-clause. The hypothesis above after
dividing clauses for the average combiner looks like this:

man(x0) ∧ agent(e1, x0)⇒ result(x0, e1, x2) | w
drive(e1) ∧ agent(e1, x0)⇒ result(x0, e1, x2) | w

drive(e1) ∧ patient(e1, x2)⇒ result(x0, e1, x2) | w
car(x2) ∧ patient(e1, x2)⇒ result(x0, e1, x2) | w

(19)

where result becomes the query predicate. Here, result has all of the variables in the clause as arguments
in order to maintain the binding of variables across all of the mini-clauses. The weights w are the following
function of n, the number of mini-clauses (4 in the above example):

w =
1
n
× log(α

1− α) (20)

where α is a value close to 1 that is set to maximize performance on the training data. Setting w this way
produces a probability of α for the result() in cases that satisfy the antecedents of all mini-clauses. For the
example above, the antecedents of the first two mini-clauses are satisfied, while the antecedents of the last
two are not since the premise provides no evidence for an object of the verb drive. The similarity is then
computed to be the maximum probability of any grounding of the result predicate, which in this case is
around α

2 .
The average combiner is very memory consuming since the number of arguments of the result() predi-

cate can become large (there is an argument for each individual and event in the sentence). Consequently, the
inference algorithm needs to consider a combinatorial number of possible groundings of the result() pred-
icate, making inference very slow. However, one experiment that is worth trying is applying the modified
closed-world assumption discussed in 3.3.1.2, which potentially can reduce the number of groundings.

3.3.3 STS using PSL

For several reasons, we believe PSL is a more appropriate probabilistic logic for STS than MLNs. First, it
is explicitly designed to support efficient inference, therefore it scales better to longer sentences with more
complex logical forms. Second, it is also specifically designed for computing similarity between complex
structured objects rather than determining probabilistic logical entailment. In fact, the initial version of
PSL (Broecheler, Mihalkova, & Getoor, 2010) was called Probabilistic Similarity Logic, based on its use
of similarity functions. This initial version was shown to be very effective for measuring the similarity of
noisy database records and performing record linkage (i.e. identifying database entries referring to the same
entity, such as bibliographic citations referring to the same paper).

This section explains how we adapt PSL’s inference to be more suitable for the STS task (Beltagy et al.,
2014a). For the same reason explained in section 3.3.2 that the conjunction tends to be more restrictive
than required by the STS task, PSL does not work very well “out of the box”. We show how to relax this
conjunction, and make the required changes to the optimization problem and the grounding technique.

18

Changing Conjunction As mentioned above, Lukasiewicz’s formula for conjunction is very restrictive
and does not work well for STS. Therefore, we replace it with a new averaging interpretation of conjunction
that we use to interpret the query Q. The truth value of the proposed average function is defined as:

I(p1 ∧ ∧ pn) =
1
n

n∑

i=1

I(pi) (21)

where pi is one of the conjuncted ground atoms. This averaging function is linear, and the result is a valid
truth value in the interval [0, 1], therefore this change is easily incorporated into PSL without changing the
complexity of inference which remains a linear-programming problem.

Heuristic Grounding Grounding is the process of instantiating the variables in the quantified rules with
concrete constants in order to construct the nodes and links in the final graphical model. In principle,
grounding requires instantiating each rule in all possible ways, substituting every possible constant for each
variable in the rule. However, this is a combinatorial process that can easily result in an explosion in the
size of the final network (same problem in MLN). Therefore, PSL employs a “lazy” approach to grounding
that avoids the construction of irrelevant groundings. If there is no evidence for one of the antecedents
in a particular grounding of a rule, then the normal PSL formula for conjunction guarantees that the rule
is trivially satisfied (I(r) = 1) since the truth value of the antecedent is zero. Therefore, its distance to
satisfaction is also zero, and it can be omitted from the ground network without impacting the result of MPE
inference. This approach has similar effect as the modified closed-world assumption used with MLN in
section 3.3.1.2.

However, this technique does not work once we switch to using averaging to interpret the query. For
example, given the rule ∀x. p(x) ∧ q(x) ⇒ t() and only one piece of evidence p(C) there are no relevant
groundings because there is no evidence for q(C), and therefore, for normal PSL, I(p(C) ∧ q(C)) = 0
which does not affect I(t()). However, when using averaging with the same evidence, we need to generate
the grounding p(C) ∧ q(C) because I(p(C) ∧ q(C)) = 0.5 which does affect I(t()).

One way to solve this problem is to eliminate lazy grounding and generate all possible groundings.
However, this produces an intractably large network. Therefore, we developed a heuristic approximate
grounding technique that generates a subset of the most impactful groundings. Pseudocode for this heuristic
approach is shown in algorithm 2. Its goal is to find constants that participate in ground atoms with high
truth value and preferentially use them to construct a limited number of groundings of the query rule.

The algorithm takes the antecedents of a rule (in this case, the query formula Q) employing averaging
conjunction as input. It also takes the grounding limit which is a threshold on the number of groundings to
be returned. The algorithm uses several subroutines, they are:

• Ant(vi): given a variable vi, it returns the set of rule antecedent atoms containing vi. E.g, for the rule:
a(x) ∧ b(y) ∧ c(x), Ant(x) returns the set of atoms {a(x), c(x)}.

• Const(vi): given a variable vi, it returns the list of possible constants that can be used to instantiate
the variable vi.

• Gnd(ai): given an atom ai, it returns the set of all possible ground atoms generated for ai.

• GndConst(a, g, v): given an atom a and grounding g for a, and a variable v, it finds the constant that
substitutes for v in g. E.g, assume there is an atom a = ai(v1, v2), and the ground atom g = ai(A,B)
is one of its groundings. GndConst(a, g, v2) would return the constant B since it is the substitution
for the variable v2 in g.

19

Algorithm 2 Heuristic Grounding
Input rbody = a1 ∧ ∧ an: antecedent of a rule with average interpretation of conjunction
Input V : set of variables used in rbody
Input Ant(vi): subset of antecedents aj containing variable vi
Input Const(vi): list of possible constants of variable vi
Input Gnd(ai): set of ground atoms of ai.
Input GndConst(a, g, v): takes an atom a, grounding g for a, and variable v, and returns the constant that

substitutes v in g
Input gnd limit: limit on the number of groundings

1: for all vi ∈ V do
2: for all C ∈ Const(vi) do
3: score(C) =

∑
a∈Ant(vi)

(max I(g)) for g ∈ Gnd(a) ∧GndConst(a, g, vi) = C
4: end for
5: sort Const(vi) on scores, descending
6: end for
7: return For all vi ∈ V , take the Cartesian-product of the sorted Const(vi) and return the top gnd limit

results

Lines 1-6 loop over all variables in the rule. For each variable, lines 2-5 construct a list of constants for that
variable and sort it based on a heuristic score. In line 3, each constant is assigned a score that indicates the
importance of this constant in terms of its impact on the truth value of the overall grounding. A constant’s
score is the sum, over all antecedents that contain the variable in question, of the maximum truth value of
any grounding of that antecedent that contains that constant. Pushing constants with high scores to the top
of each variable’s list will tend to make the overall truth value of the top groundings high. Line 7 computes
a subset of the Cartesian product of the sorted lists of constants, selecting constants in ranked order and
limiting the number of results to the grounding limit.

One point that needs to be clarified about this approach is how it relies on the truth values of ground
atoms when the goal of inference is to actually find these values. PSL’s inference is actually an iterative
process where in each iteration a grounding phase is followed by an optimization phase (solving the linear
program). This loop repeats until convergence, i.e. until the truth values stop changing. The truth values used
in each grounding phase come from the previous optimization phase. The first grounding phase assumes
only the ground atoms in the evidence set have non-zero truth values.

3.4 Evaluation

This section presents the results of the evaluation of our semantic representation on the RTE and STS tasks.
It starts with a description of the used datasets, then evaluation of the effect of the knowledge base, then
evaluation of the inference step.

3.4.1 Datasets

We use three datasets for evaluation on the RTE and STS tasks

• SICK(for RTE and STS): “Sentences Involving Compositional Knowledge” (SICK) (Marelli et al.,
2014) is a dataset collected for the SemEval 2014 competition. The dataset is 5,000 pairs for training
and 5,000 for testing. Pairs are annotated for RTE and STS tasks.

20

Task RTE STS
Dataset SICK SICK msr-vid msr-par
dist 60.00 % 0.65 0.78 0.24
state of the art 84.57 % 0.82 0.87 0.68

MLN
logic 73.44% – – –
logic+kb 77.72% 0.47 0.63 0.16

PSL
logic n/a 0.72 0.74 0.46
logic+kb n/a 0.74 0.79 0.53

Table 1: System’s performance, Accuracy for the RTE task, and Pearson Correlation for the STS task

• msr-vid (for STS): Microsoft Video Paraphrase Corpus from SemEval 2012 (Agirre et al., 2012) The
dataset consists of 1,500 pairs of short video descriptions collected using crowdsourcing (Chen &
Dolan, 2011) and subsequently annotated for the STS task. Half of the dataset is for training, and the
second half is for testing.

• msr-par (for STS): Microsoft Paraphrase Corpus from SemEval 2012 (Agirre et al., 2012). The
dataset is 5,801 pairs of sentences collected from news sources (Dolan, Quirk, & Brockett, 2004).
Then, for STS 2012, 1,500 pairs were selected and annotated with similarity scores. Half of the
dataset is for training, and the second half is for testing.

3.4.2 Knowledge Base Evaluation

This section evaluates our semantic representation compared to two baselines, distributional-only baseline
and logic-only baseline.

Systems Compared

• dist: We use vector addition (Landauer & Dumais, 1997) as a distributional-only baseline. We com-
pute a vector representation for each sentence by adding the distributional vectors of all of its words
and measure similarity using cosine. This is a simple yet powerful baseline that uses only distribu-
tional information.

• logic: this is our probabilistic logic semantic representation but with no knowledge base.

• logic+kb: this is our probabilistic logic semantic representation with the knowledge base we build in
section 3.2.

Results and Discussion Table 1 summarizes results of evaluating our semantic representation. RTE’s
performance is measured in Accuracy, and STS’s performance is measured in Pearson correlation. For
the RTE task, our MLN system (logic and logic-kb) out-performs the purely distributional baselines dist,
because MLN benefits from the precision that the logic provides. For the STS task, our PSL system also out-
performs the purely distributional baselines because it is able to combine the information available to dist
in a better way that takes sentence structure into account. However, our MLN system for the STS task does
not do as well as PSL. One reason is that MLN’s performance is sensitive to the parameters of the average
combiner, that is why we propose using weight learning to learn these parameters (section 4.4). Another

21

reason is that MLN’s inference for STS is very slow, and it times out in large number of pairs as we show
in section 3.4.3. Table 1 also shows that adding the knowledge base, enhances the system performance.
Inference rules are effectively representing the background knowledge, and allowing the inference to make
better conclusions.

Table 1 also shows that our system is not performing as good as the state of the art. One major difference
between our system and the top performing systems (Bär, Biemann, Gurevych, & Zesch, 2012; Lai &
Hockenmaier, 2014; Zhu & Lan, 2014) is that they are large ensembles of simple features that are carefully
engineered to the particular details of the datasets used for evaluation. For example, most of the contradicting
RTE pairs in the SICK dataset are constructed using a simple negation like “T: A man is drawing”, “H: There
is no man drawing”. This means that a simple feature that detects the existence of a negation operator is
enough to correctly capture most of the contradicting pairs. On the other hand, our semantic representation
is a general one that can be applied to any dataset, as we are not making any assumptions about the sentences
(except that the parser can parse them). It can also be applied to more tasks other than RTE and STS as we
discuss in the future work.

Error analysis can help us direct our future work to improve the performance of our system. This is
an error analysis for our system’s performance on the RTE task on the SICK dataset. From the confusion
matrix, we find that the 22.28% misclassifications are distributed as follows,

• Entailment pairs classified as Neutral: 15.32%

• Contradiction pairs classified as Neutral: 6.12%

• Other: 0.84 %

This gives our system precision of 98.9% and recall of 78.56%. This is the typical behaviour of logic-
base systems, that they have very high precision, but low recall. As concluded in (Bos, 2013), the low
recall is mainly because of lack of enough knowledge base. Adding more inference rules and background
information from different sources can help bridge this gap, as we explain in the future work. Also in the
detection of contradiction, we found some limitations that we are also explaining and proposing a solution
for, in the future work.

3.4.3 Inference Evaluation

This section evaluates the inference techniques based on accuracy and computational efficiency.

3.4.3.1 RTE Inference This is an evaluation for the different components of the inference process for
the RTE task, namely the Query formula, and the Modified Closed-world.

Systems Compared

• mln: This system uses MC-SAT (Richardson & Domingos, 2006) for inference without any modifi-
cations. It uses the work-around explained in section 3.3.1.1 to calculate the probability of a complex
query formula, and uses an open-world assumption.

• mln+qf: This system uses our SampleSearch inference to directly calculate the probability of a query
formula (qf), while making an open-world assumption.

• mln+mcw: This system uses MC-SAT with the work-around for computing the probability of a com-
plex query formula, but uses our modified closed-world (mcw) assumption.

22

Accuracy CPU Time Timeouts
mln 56.94% 2min 27s 95.78%
mln+qf 68.74% 1min 51s 29.64%
mln+mcw 65.80% 10s 2.52%
mln+qf+mcw 71.80% 7s 2.12%

Table 2: Systems’ performance, accuracy, CPU Time for completed runs only, and percentage of Timeouts

• mln+qf+mcw: This is our proposed technique, inference that supports a query formula (qf) and makes
a modified closed-world (mcw) assumption.

We use a 30 minute timeout for each MLN inference run in order to make the experiments tractable. If the
system times out, it outputs -1 indicating an error, and the classifier learns to assign it to one of the three
RTE classes. Usually, because the Neutral class is the largest, timeouts are classified as Neutral.

Metrics

• Accuracy: Percentage of correct classifications (Entail, Contradict, or Neutral)

• CPU Time (completed runs): Average CPU time per run for the completed runs only, i.e. timed out
runs are not included.

• Timeouts: Percentage of inferences that timeout after 30 minutes.

Results and Discussion Table 2 summarizes the results of the experiments. First, for all systems, the CPU
time (average time per run for completed runs only) is very short compared to the length of the timeout (30
minutes). This shows the exponential nature of the inference algorithms, either the problem is small enough
to finish in few minutes, or if it is slightly larger, it fails to finish in reasonable time.

Comparing the systems, results clearly show that the base system, mln, is not effective for the type of
inference problems that we are addressing, almost all of the runs timed out. System mln+qf shows the
impact of being able to calculate the probability of a complex query directly. It significantly improves the
accuracy, and it lowers the number of timeouts; however, the number of timeouts is still large. System
mln+mcw shows the impact of the modified closed-world assumption, demonstrating that it makes infer-
ence significantly faster, since the number of unreachable ground atoms in our application is large compared
to the total number of ground atoms. However, the accuracy of mln+mcw is lower than that of mln+qf,
since calculating the probability of a query directly is more accurate than the standard work-around. Finally,
mln+qf+mcw is both more accurate and faster than the other systems, clearly demonstrating the effective-
ness of our overall approach.

3.4.3.2 STS Inference This section compares the computational efficiency of STS inferences on MLN
and PSL.

Computational Efficiency Table 3 shows the average CPU time for PSL and MLN inferences for the STS
task. Because MLN’s inference is slow, we use a timeout of 10 minutes. The results clearly demonstrate
that PSL is an order of magnitude faster than MLN, and MLN’s inference frequently times out. This is one

23

PSL MLN
CPU time CPU time timeouts

msr-vid 8s 1m 31s 8.8%
msr-par 30s 11m 49s 97.1%
SICK 10s 4m 24s 35.82%

Table 3: Average CPU time per STS pair, and percentage of timed-out pairs in MLN with a 10 minute time
limit. PSL’s grounding limit is set to 10,000 groundings.

(a) correlation score (b) CPU time

Figure 3: Effect of PSL’s grounding limit on performance for the msr-par dataset

of the reasons why the accuracy of MLN on the STS task is low as shown in table 1. This confirms that PSL
is a better fit for the STS task.

As an attempt to improve MLN for the STS task, it should be possible to apply the modified closed-world
assumption (section 3.3.1.2) that we developed for the RTE task on the STS task. This has the potential to
significantly reduce the size of the problem and make MLN inference for STS faster. Applying the modified
closed-world assumption to MLN also makes the comparison with PSL more fair, because PSL is already
enforcing a comparable technique (lazy grounding) that plays a similar role in reducing the problem size.

PSL grounding limit We also evaluate the effect of changing the grounding limit on both Pearson cor-
relation and CPU time for the msr-par dataset. Most of the sentences in msr-par are long, which results
is large number of groundings, and limiting the number of groundings has a visible effect on the overall
performance. In the other two datasets, the sentences are fairly short, and the full number of groundings is
not large; therefore, changing the grounding limit does not significantly affect the results.

Figures 3a and 3b show the effect of changing the grounding limit on Pearson correlation and CPU
time. As expected, as the grounding limit increases, accuracy improves but CPU time also increases. How-
ever, note that the difference in scores between the smallest and largest grounding limit tested is not large,
suggesting that the heuristic approach to limit groundings is quite effective.

24

4 Proposed Research

This section discusses the proposed short-term research directions organized by the system component,
followed by the long-term goals.

4.1 Parsing and Task Representation

Better RTE task formulation In the RTE task, we identify contradictions with the help of the inference
P (H|¬T,KB). The intuition behind this additional inference is that if ¬T |= H , then T contradicts H .
Although this helps detecting a lot of the contradictions in our experiments, it is not the best way to do so,
because it misses many cases of contradictions. For example, consider this contradicting RTE pair: “T: No
man is playing a flute”, “H: A man is playing a large flute”, which in logic are:

T : ¬∃x, y, z. man(x) ∧ agent(y, x) ∧ play(y) ∧ patient(y, z) ∧ flute(z)
¬T : ∃x, y, z. man(x) ∧ agent(y, x) ∧ play(y) ∧ patient(y, z) ∧ flute(z)
H: ∃x, y, z. man(x) ∧ agent(y, x) ∧ play(y) ∧ patient(y, z) ∧ large(z) ∧ flute(z)

It is clear from the example that ¬T 6|= H , and we get a wrong conclusion.
Logically, detection of contradiction is checking that T ∧H |= False which is equivalent to T |= ¬H .

However, the probabilistic counterpart of T |= ¬H is P (¬H|T) which equals 1−P (H|T), and that means
evaluating P (¬H|T) does not add any extra information other than what is provided by P (H|T), and it can
not be used to detect contradictions. The solution comes from the fact that T |= ¬H is logically equivalent
to H |= ¬T , but its probabilistic counterpart P (¬T |H) does not equal P (¬H|T) . This suggests that the
inference that we need for the detection of contradictions is P (¬T |H) because it is logically correct, and it
is probabilistically more informative than P (¬H|T).

With the enhancement discussed above, we will be detecting the Entailments and Contradictions using

the two inferences P (H|T) and P (¬T |H). A better way to detect them would be to take the ratios
P (H|T)
P (H)

and
P (¬T |H)
P (¬T)

. The intuition behind the ratios is that they measure to what extent adding the evidence

changes the probability of the query from its prior probability. For example, large values for
P (H|T)
P (H)

means that adding T increases probability of H which is a stronger indication of Entailment than just the
value of P (H|T). Similarly, values around 1 mean that T does not affect probability of H which is an
indication that T is Neutral to H , and values close to 0 are another indicator of Contradiction.

DCA and Negated Existential We discussed in section 3.1.2 how to get correct inferences for universally
quantified hypothesis H despite the finite domain restriction that DCA enforces. We make sure that a
universally quantified H is entailed not just because it is true for all entities in the domain (as enforced by
DCA), but also because of an explicit universal quantification in T . We only supported one form of universal
quantifiers, but we do not have support for the negated existential form of universal quantifiers, e.g.

¬∃x, y. young(x) ∧ girl(x) ∧ agent(y, x) ∧ dance(y) (22)

In finite domains, and because of the closed-world assumption that enforces everything to be false by default,
H could come to be true no matter what T says. However, we need H to be true only if T is explicitly
negating the existence of a young girl that dances. One possible way to achieve that goal is to add to the

25

MLN a rule R representing the negated part of H , and set its weight to a high value, but not infinity. This
way, without T ,H will have a very low probability. H can not be true unless T (which has infinite weight) is
explicitly negating R. Here is an RTE example adapted from the SICK dataset, “T: A young girl is standing
on one leg”, “H: There is no young girl dancing” which in logic are:

T : ∃x, y, z. young(x) ∧ girl(x) ∧ agent(y, x) ∧ stand(y) ∧ patient(y, z) ∧ one(z) ∧ leg(z)
H: ¬∃x, y. young(x) ∧ girl(x) ∧ agent(y, x) ∧ dance(y)
R: young(G) ∧ girl(G) ∧ agent(D,G) ∧ dance(D)|w = 5.0

For the detection of entailment, we need to compute P (T |H). We want P (T |H) to be 0, but we actually
get P (T |H) = 1 because by default, the young girl is not dancing. This is an undesired inference because
T is not explicitly negating the dancing. Then we generate R from the negated part of H . P (H|T,R) w 0
and that is because T is not explicitly negating R, which is the correct inference we need to conclude that T
does not entail H .

4.2 Knowledge Base Construction

One of the advantages of using a probabilistic logic is that additional sources of rules can easily be incorpo-
rated by adding additional soft inference rules. We propose adding two more types of rules

Paraphrase Rules In addition to WordNet, we can add rules from explicit paraphrase collections like the
ones by Berant, Dagan, and Goldberger (2011), and PPDB (Ganitkevitch et al., 2013). These are precom-
piled collections of rules, not generated on-the-fly as we do with the distributional rules. To be able to use
these rules in our system, they need to be translated into logic, then weighted. For example, the paraphrase
rule “solve”⇒“find a solution to” should be translated to:

∀e, x. solve(e) ∧ patient(e, x)⇒ ∃s. find(e) ∧ patient(e, s) ∧ solution(s) ∧ to(t, x) (23)

The tricky part is how to match variables of the left-hand side into the predicates on the right-hand side of
the rule, we call this step variable binding. For simple rules that do not have many entities on each side of
the rule, we can define a set of “templates” or patterns for them. For example, variable binding of a rule
like noun-phrase⇒noun-phrase is simple because each side has only one variable. Templates can handle
most of the rules, but not all of them. For more complex cases, we are planning to convert to logic both
the natural language sentence and the sentence after the rule has been applied to it, then extract the rule
in first-order logic from there. After translating the rules to logic, the rule’s weight that comes with the
paraphrase collection need to be mapped to a probabilistic logic weight. There are different possible ways
to map paraphrase weights to probabilistic logic weights. One way is to use an equation similar to the one
used with the distributional semantics as shown in section 3.2.2, and this assumes that paraphrase weights
can be normalized to values between zero and one. Another way is to use weight learning as we discuss in
the future work in section 4.4

Phrasal Distributional Rules In addition to the lexical distributional rules, we plan to generate phrasal
distributional rules. Phrasal distributional rules are inference rules generated between short phrases (not
individual words). Weights of the rules come from distributional semantics. The rules will be generated
based on linguistically motivated “templates”. A template specifies what a phrase is, and how variables
are mapped between the left-hand side and the right-hand side of the rule (variable binding). The simplest
template is “noun-phrase ⇒ noun-phrase”, e.g. ∀x. little(x) ∧ kid(x) ⇒ smart(x) ∧ boy(x). It is the

26

simplest template because each side of the rule has a single variable, and the variable binding is trivial. A
more complex rule could be between verb phrases, “subject-noun-phrase + verb + object-noun-phrase ⇒
subject-noun-phrase + verb + object-noun-phrase”. Each side has three variables, and variable binding is to
map subject to subject, verb to verb and object to object, e.g.

∀x, y, z. man(x) ∧ agent(y, x) ∧ drive(y) ∧ patient(y, z) ∧ car(z)
⇒ guy(x) ∧ agent(y, x) ∧ ride(y) ∧ patient(y, z) ∧ bike(z) (24)

Templates are defined based on our linguistic knowledge, and based on the capabilities of distributional se-
mantics. It is better to avoid using phrases that distributional semantics can not efficiently represent as vec-
tors. Different distributional compositionality techniques can be tried, from simple ones like vector addition
and component-wise multiplication (Mitchell & Lapata, 2008, 2010) to more sophisticated ones (Grefen-
stette & Sadrzadeh, 2011; Paperno, Pham, & Baroni, 2014).

4.3 Inference

Better inference for MLN with Query Formula Our MLN inference algorithm to calculate the prob-
ability of a query discussed in section 3.3.1.1 can be enhanced. Instead of making two separate runs of
SampleSearch to estimate two different Zs, it would be helpful to exploit the similarities between the two
Markov networks (one with Q and one without Q) to reduce the amount of repeated computation. Also, it
should be possible to optimize the calculations, or simplify them, knowing that we are really only interested
in the ratio between the two Zs and not their individual values.

Generalized Modified Closed-World assumption Our algorithm for the modified closed-world assump-
tion works only for the current form of inference rules we generate. It assumes that all inference rules are
of the form ∀v1..vn lhs ⇒ rhs where lhs and rhs are sets of conjuncted predicates. This assumptions
simplifies the implementation of propagation of evidence from the lhs of a rule to its rhs. However, this
technique is not general enough to handle more complex forms of rules. For example, it is not clear how to
propagate evidence for a rule like: ∀x. short(x) ⇔ ¬long(x). By default, all entities are “not short” and
“not long”, which contradicts this rule, and there is no obvious way to decide what entities to be “short” and
what entities to be“long”. We need a general technique that for arbitrary MLNs, it can decide what ground
atoms have their probabilities change during the inference process, and what ground atoms remain having
their prior probabilities.

4.4 Learning

All the work we have done so far was in inference, but probabilistic logic frameworks also support learning
for the weights. Weight learning can be applied to our system in many ways, some of them are listed below.
We would like to attempt at least one of them.

• Weights that we have on inference rules, either distributional or precompiled paraphrases, are learned
from large collection of text, but they are not learned specifically for being used as weights of inference
rules in probabilistic logic. Although the function f in equation 15 plays an important role to map
these weights to MLN weights, it would be more accurate to learn this mapping from the training set.
Because of limited training data, we can not learn a weight per a rule. Instead, we can learn a weight
per a rule type. We can think of the current function f as a prior, then extend it with a type-dependant
parameter that we learn in the learning process.

27

• In the STS task, learn to assign different weights to different parts of the sentence where higher weight
indicates that annotators pay more attention to that part. For example, we could learn that the type of
an object determined by a noun should be weighted more than a property specified by an adjective.
As a result, “black dog” would be appropriately judged more similar to “white dog” than to “black
cat.”. Because the training data is limited, we can not learn different weights for different words.
Instead, we can learn weights for different fragments of the sentence. Sentence fragments need to be
abstracted to fragment type. A candidate fragment types is using the CCG Supertag of each word as
its category. This means, we only need to learn a weight per a CCG Supertag. In MLN, weights are
applied through weights of the rules of the average combiner. In PSL, weights are applied through the
averaging equation which is replaced with weighted average.

4.5 Long Term

In the long-term, we propose to extend our work in the following directions:

Question Answering Our semantic representation is a deep flexible semantic representation that can be
used to perform various types of tasks, not just RTE and STS. We are interested in applying our semantic
representation to the question answering task. Question answering is the task of finding an answer of a
WH question from large corpus of unstructured text. All the text is translated to logic, and the question is
translated to a logical expression with existentially quantified variable representing the questioned part. Then
probabilistic logic inference tool needs to find the best entities in the text that fill in that existential quantifier
in the question. Existing logic-based systems are usually applied to limited domains, such as querying a
specific database (Kwiatkowski et al., 2013; Berant et al., 2013), but with our system, we have the potential
to query a large corpus of unstructured text because we are using Boxer for wide-coverage semantic analysis.
The interesting bottleneck is the inference. It would be very challenging to scale probabilistic logic inference
to such large inference problems.

A related, but not similar task is given the same corpus of text as in the question answering task and with
no question, we would like to generating the n most probable inferences. In (Angeli & Manning, 2014), this
task is named “Common Sense Reasoning”. Performing this task in probabilistic logic requires a new type
of inference algorithms that can generate these inferences without a specific query to direct the search.

Generalized Quantifiers Generalized quantifiers are words like Few, Most, Many, Only .. etc (Barwise
& Cooper, 1981). First-order logic has native support for two of them, Every and Some. Also, some of them
can be encoded relatively easy in first-order logic, like Exactly. However, some of them like Few, Most
and Many are not natively supported in first-order logic, and they can not be encoded easily. We would
like to add support for these generalized quantifiers in our system. A generalized quantifier has a restrictor
and body. In “Most birds fly”, the generalized quantifier “Most” has the restrictor “birds” and the body
“fly”. One way to add support for generalized quantifiers in the RTE task, is to reason about the direction
of entailments between the restrictors and the bodies of the sentences. For example, consider the RTE pair:
“T: Most big birds fly high”, “H: Some birds fly”. We can conclude that T entails H because the restrictor
“big birds” of T entails the restrictor “birds” of H , and the body “fly high” of T entails the body “fly” of H .

Another way to represent some of the generalized quantifiers, especially Most and Few, is to replace
Most or Few with “Every” and give the rule a low weight indicating that some worlds could be violating it.
Setting the weight is a function of the generalized quantifier being represented.

28

Contextualized WordNet rules We add WordNet rules with infinite weights. However, because words
are ambiguous based on context, a better way to represent the WordNet information is to use Word Sense
Disambiguation (WSD) (Navigli, 2009; Tan, 2014) to disambiguate words, then generate “weighted” rules
for possible senses, where the WSD’s confidence is mapped to a rule weight.

Other Languages we would like to see how our semantic representation can be applied on languages other
than English. Theoretically, the proposed semantic representation is language independent, but practically,
not all the resources and tools are available. Other than English, the only CCGbank (to train a CCG parser)
available is Chinese CCGbank (Tse & Curran, 2010). As for Boxer, it only supports English, but there are
future plans for its multi-language support. Once there is a CCGbank and Boxer available for a language,
the rest of the pipeline is relatively easy. Building a vector space and generating lexical rules is straight
forward. Also any available resource of background knowledge can be mapped to logical rules and added
to the system. The inference part should be the same with no changes.

Inference Inspector Probabilistic logic tools need to be extended to output information about the infer-
ence process, what rules were useful to reach the conclusion and what rules were not. This can be a useful
tool to debug the system and identify the problems. Such extra information is helpful for the RTE task to
know which part of T is the reason to entail which part of H . This gives insights on how the inference
process goes, and facilitates finding the kind of missing knowledge bases. BIUTEE (Stern & Dagan, 2013)
is an example of an RTE system that adds explanations to the inference.

Implementing such tool in PSL would be easier than in MLN. PSL’s inference is an optimization prob-
lem, so it should be enough to list the rules found at the critical point where the optimal solution lies. In
MLN, it is not as straight forward as in PSL, because in MLN all rules affect the output to some extent.
Some rules affect it dramatically, others slightly affect it. So what we need is being able to find the rules
with the most impact.

5 Conclusions

Being able to effectively represent natural languages semantics is important and has a lot of potential appli-
cations. In this proposal, we use probabilistic logic to represent natural language semantics to combine the
expressivity and the automated inference of the logical representations, with the ability to capture graded
aspect of natural languages as in distributional semantics. We evaluate this semantic representation on two
end tasks that require deep semantic understanding, RTE and STS. Our system maps natural sentences to
logical formulas, use them to build probabilistic logic inference problems, build a knowledge base from
precompiled resources and on-the-fly resources, then perform inference for the RTE and STS tasks on MLN
and PSL using our inference algorithms that are tailored for the type of inference problems we are interested
in. Experiments showed that our system can handle RTE and STS reasonably well.

For the future work, we enhance formulation of the RTE task, build bigger knowledge base from more
resources, generalize our modified closed-world assumption, enhance our MLN inference algorithm, and
use some weight learning. Our long term goals are applying our semantic representation to the question
answering task, support generalized quantifiers, contextualizing our WordNet rules, applying our semantic
representation to other languages and implementing a probabilistic logic inference inspector that visualises
the inference process.

29

6 Acknowledgments

This research was supported in part by the NSF CAREER grant IIS 0845925, by an NDSEG grant, by MURI
ARO grant W911NF-08-1-0242 and by the DARPA DEFT program under AFRL grant FA8750-13-2-0026.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the view of DARPA, AFRL, ARO, DoD or the US government. Most
of our experiments were run on the Mastodon Cluster supported by NSF Grant EIA-0303609.

30

References

Agirre, E., Cer, D., Diab, M., & Gonzalez-Agirre, A. (2012). SemEval-2012 task 6: A pilot on semantic tex-
tual similarity. In Proceedings of the 6th International Workshop on Semantic Evaluation (SemEval-
2012).

Angeli, G., & Manning, C. D. (2014). Naturalli: Natural logic inference for common sense reasoning.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP-
2014).

Bach, S. H., Huang, B., London, B., & Getoor, L. (2013). Hinge-loss Markov random fields: Convex
inference for structured prediction. In Proceedings of 29th Conference on Uncertainty in Artificial
Intelligence (UAI-2013).

Bär, D., Biemann, C., Gurevych, I., & Zesch, T. (2012). UKP: Computing semantic textual similarity by
combining multiple content similarity measures. In Proceedings of the 6th International Workshop
on Semantic Evaluation (SemEval-2012).

Baroni, M., & Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices: Representing adjective-
noun constructions in semantic space. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP-2010).

Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy,
4(2), 159–219.

Beltagy, I., Chau, C., Boleda, G., Garrette, D., Erk, K., & Mooney, R. (2013). Montague meets Markov:
Deep semantics with probabilistic logical form. In Proceedings of the Second Joint Conference on
Lexical and Computational Semantics (*SEM-2013).

Beltagy, I., Erk, K., & Mooney, R. (2014a). Probabilistic soft logic for semantic textual similarity. In
Proceedings of Association for Computational Linguistics (ACL-2014).

Beltagy, I., Erk, K., & Mooney, R. (2014b). Semantic parsing using distributional semantics and probabilistic
logic. In Proceedings of ACL 2014 Workshop on Semantic Parsing (SP-2014).

Beltagy, I., & Mooney, R. J. (2014). Efficient Markov logic inference for natural language semantics. In
Proceedings of AAAI 2014 Workshop on Statistical Relational AI (StarAI-2014).

Beltagy, I., Roller, S., Boleda, G., Erk, K., & Mooney, R. J. (2014). UTexas: Natural language semantics us-
ing distributional semantics and probabilistic logic. In Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval-2014).

Berant, J., Chou, A., Frostig, R., & Liang, P. (2013). Semantic parsing on Freebase from question-answer
pairs. In Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP-
2013).

Berant, J., Dagan, I., & Goldberger, J. (2011). Global learning of typed entailment rules. In Proceedings of
Association for Computational Linguistics (ACL-2011).

Bos, J. (2008). Wide-coverage semantic analysis with Boxer. In Proceedings of Semantics in Text Processing
(STEP-2008).

Bos, J. (2013). Is there a place for logic in recognizing textual entailment?. Linguistic Issues in Language
Technology, 9.

31

Broecheler, M., Mihalkova, L., & Getoor, L. (2010). Probabilistic Similarity Logic. In Proceedings of 26th
Conference on Uncertainty in Artificial Intelligence (UAI-2010).

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines.. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Chen, D. L., & Dolan, W. B. (2011). Collecting highly parallel data for paraphrase evaluation. In Proceed-
ings of Association for Computational Linguistics (ACL-2011).

Clark, S., & Curran, J. R. (2004). Parsing the WSJ using CCG and log-linear models. In Proceedings of
Association for Computational Linguistics (ACL-2004).

Dagan, I., Roth, D., Sammons, M., & Zanzotto, F. M. (2013). Recognizing textual entailment: Models and
applications. Synthesis Lectures on Human Language Technologies, 6(4), 1–220.

Dechter, R., Kask, K., & Mateescu, R. (2002). Iterative join-graph propagation. In Proceedings of 18th
Conference on Uncertainty in Artificial Intelligence (UAI-2002).

Dolan, B., Quirk, C., & Brockett, C. (2004). Unsupervised construction of large paraphrase corpora: Ex-
ploiting massively parallel news sources. In Proceedings of the Twentieth International Conference
on Computational Linguistics (COLING-2004).

Erk, K., & Padó, S. (2008). A structured vector space model for word meaning in context. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP-2008).

Friedman, J. (1999). Stochastic gradient boosting. Tech. rep., Stanford University.

Ganitkevitch, J., Van Durme, B., & Callison-Burch, C. (2013). PPDB: The paraphrase database. In Proceed-
ings of North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT-2013).

Garrette, D., Erk, K., & Mooney, R. (2011). Integrating logical representations with probabilistic informa-
tion using Markov logic. In Proceedings of International Conference on Computational Semantics
(IWCS-2011).

Getoor, L., & Taskar, B. (Eds.). (2007). Introduction to Statistical Relational Learning. MIT Press, Cam-
bridge, MA.

Gogate, V. (2014). IJGP-sampling and SampleSearch.. Software available at http://www.hlt.
utdallas.edu/˜vgogate/ijgp-samplesearch.html.

Gogate, V., & Dechter, R. (2011). SampleSearch: Importance sampling in presence of determinism. Artificial
Intelligence, 175(2), 694–729.

Gogate, V., & Domingos, P. (2011). Probabilistic theorem proving. In Proceedings of 27th Conference on
Uncertainty in Artificial Intelligence (UAI-2011).

Grefenstette, E. (2013). Towards a formal distributional semantics: Simulating logical calculi with tensors.
In Proceedings of Second Joint Conference on Lexical and Computational Semantics (*SEM-2013).

Grefenstette, E., & Sadrzadeh, M. (2011). Experimental support for a categorical compositional distribu-
tional model of meaning. In Proceedings of Conference on Empirical Methods in Natural Language
Processing (EMNLP-2011).

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data
mining software: an update. SIGKDD Explor. Newsl., 11(1), 10–18.

Kamp, H., & Reyle, U. (1993). From Discourse to Logic. Kluwer.

32

Kimmig, A., Bach, S. H., Broecheler, M., Huang, B., & Getoor, L. (2012). A short introduction to Prob-
abilistic Soft Logic. In Proceedings of NIPS Workshop on Probabilistic Programming: Foundations
and Applications (NIPS Workshop-2012).

Kok, S., Singla, P., Richardson, M., & Domingos, P. (2005). The Alchemy system for statistical relational
AI.. http://www.cs.washington.edu/ai/alchemy.

Kwiatkowski, T., Choi, E., Artzi, Y., & Zettlemoyer, L. (2013). Scaling semantic parsers with on-the-
fly ontology matching. In Proceedings of Conference on Empirical Methods in Natural Language
Processing (EMNLP-2013).

Lai, A., & Hockenmaier, J. (2014). Illinois-lh: A denotational and distributional approach to semantics. In
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval-2014).

Landauer, T., & Dumais, S. (1997). A solution to Plato’s problem: The Latent Semantic Analysis theory of
the acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211.

Lewis, M., & Steedman, M. (2013). Combined distributional and logical semantics. Transactions of the
Association for Computational Linguistics (TACL-2013), 1, 179–192.

Lin, D., & Pantel, P. (2001). Discovery of inference rules for question answering. Natural Language
Engineering, 7(4), 343–360.

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence.
Behavior Research Methods, Instruments, and Computers, 28(2), 203–208.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., & Zamparelli, R. (2014). A SICK cure for
the evaluation of compositional distributional semantic models. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation (LREC-2014).

Mitchell, J., & Lapata, M. (2008). Vector-based models of semantic composition. In Proceedings of Asso-
ciation for Computational Linguistics (ACL-2008).

Mitchell, J., & Lapata, M. (2010). Composition in distributional models of semantics. Cognitive Science,
34(3), 1388–1429.

Montague, R. (1970). Universal grammar. Theoria, 36, 373–398.

Natarajan, S., Khot, T., Lowd, D., Tadepalli, P., Kersting, K., & Shavlik, J. (2010). Exploiting causal inde-
pendence in Markov logic networks: Combining undirected and directed models. In Proceedings of
European Conference in Machine Learning (ECML-2010).

Navigli, R. (2009). Word sense disambiguation: A survey. ACM Computing Surveys (CSUR), 41(2), 10.

Paperno, D., Pham, N. T., & Baroni, M. (2014). A practical and linguistically-motivated approach to compo-
sitional distributional semantics. In Proceedings of Association for Computational Linguistics (ACL-
2014).

Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic depen-
dencies. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06),
Boston, MA.

Princeton University (2010). About WordNet.. http://wordnet.princeton.edu.

Raina, R., Ng, A. Y., & Manning, C. D. (2005). Robust textual inference via learning and abductive reason-
ing. In Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05).

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107–136.

33

Roller, S., Erk, K., & Boleda, G. (2014). Inclusive yet selective: Supervised distributional hypernymy
detection. In Proceedings of the Twenty Fifth International Conference on Computational Linguistics
(COLING-2014).

Schutze, H. (1998). Automatic word sense discrimination. Computational Linguistics, 24(1), 97–123.

Singla, P., & Domingos, P. (2008). Lifted first-order belief propagation. In Proceedings of the 23rd AAAI
Conference on Artificial Intelligence (AAAI-08).

Stern, A., & Dagan, I. (2013). The BIUTEE research platform for transformation-based textual entailment
recognition. In Linguistics Issues in Language Technology (LiLT-2013).

Szpektor, I., & Dagan, I. (2008). Learning entailment rules for unary templates. In Proceedings of the
Twenty Second International Conference on Computational Linguistics (COLING-2008).

Tan, L. (2014). Pywsd: Python implementations of word sense disambiguation (wsd) technologies [soft-
ware].. https://github.com/alvations/pywsd.

Thater, S., Fürstenau, H., & Pinkal, M. (2010). Contextualizing semantic representations using syntactically
enriched vector models. In Proceedings of Association for Computational Linguistics (ACL-2010).

Thomason, R. H. (Ed.). (1974). Formal Philosophy. Selected Papers of Richard Montague. Yale University
Press, New Haven.

Tse, D., & Curran, J. R. (2010). Chinese CCGbank: extracting CCG derivations from the Penn Chinese
Treebank. In Proceedings of the Twenty Third International Conference on Computational Linguistics
(COLING-2010).

Turney, P., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of
Artificial Intelligence Research, 37(1), 141–188.

Venugopal, D., & Gogate, V. (2013). GiSS: Combining SampleSearch and Importance Sampling for infer-
ence in mixed probabilistic and deterministic graphical models. In Proceedings of Association for the
Advancement of Artificial Intelligence(AAAI-13).

Zhu, T., & Lan, M. (2014). ECNU: Leveraging on ensemble of heterogeneous features and information
enrichment for cross level semantic similarity estimation. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval-2014).

34

